From Constraints to Finite Automata to Filtering Algorithms

نویسندگان

  • Mats Carlsson
  • Nicolas Beldiceanu
چکیده

We introduce an approach to designing filtering algorithms by derivation from finite automata operating on constraint signatures. We illustrate this approach in two case studies of constraints on vectors of variables. This has enabled us to derive an incremental filtering algorithm that runs in O(n) plus amortized O(1) time per propagation event for the lexicographic ordering constraint over two vectors of size n, and an O(nmd) time filtering algorithm for a chain of m−1 such constraints, where d is the cost of certain domain operations. Both algorithms maintain hyperarc consistency. Our approach can be seen as a first step towards a methodology for semi-automatic development of filtering algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Deriving Filtering Algorithms from Constraint Checkers

This reportdeals with global constraints for which the set of solutions can be recognized by an extended finite automaton whose size is bounded by a polynomial in , where is the number of variables of the corresponding global constraint. By reformulating the automaton as a conjunction of signature and transition constraints we show how to systematically obtain a filtering algorithm. Under some ...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Multidimensional fuzzy finite tree automata

This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...

متن کامل

Reduction of BL-general L-fuzzy Automata

In this paper, we show that for any BL-general L-fuzzy automaton (BL-GLFA) there exists a complete deterministic accessible reduced BL-general L-fuzzy automaton that recognizing the behavior of the BL-GLFA. Also, we prove that for any finite realization β, there exists a minimal complete deterministic BL-GLFA recognizing β. We prove any complete deterministic accessible reduced BL-GLFA is a min...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004